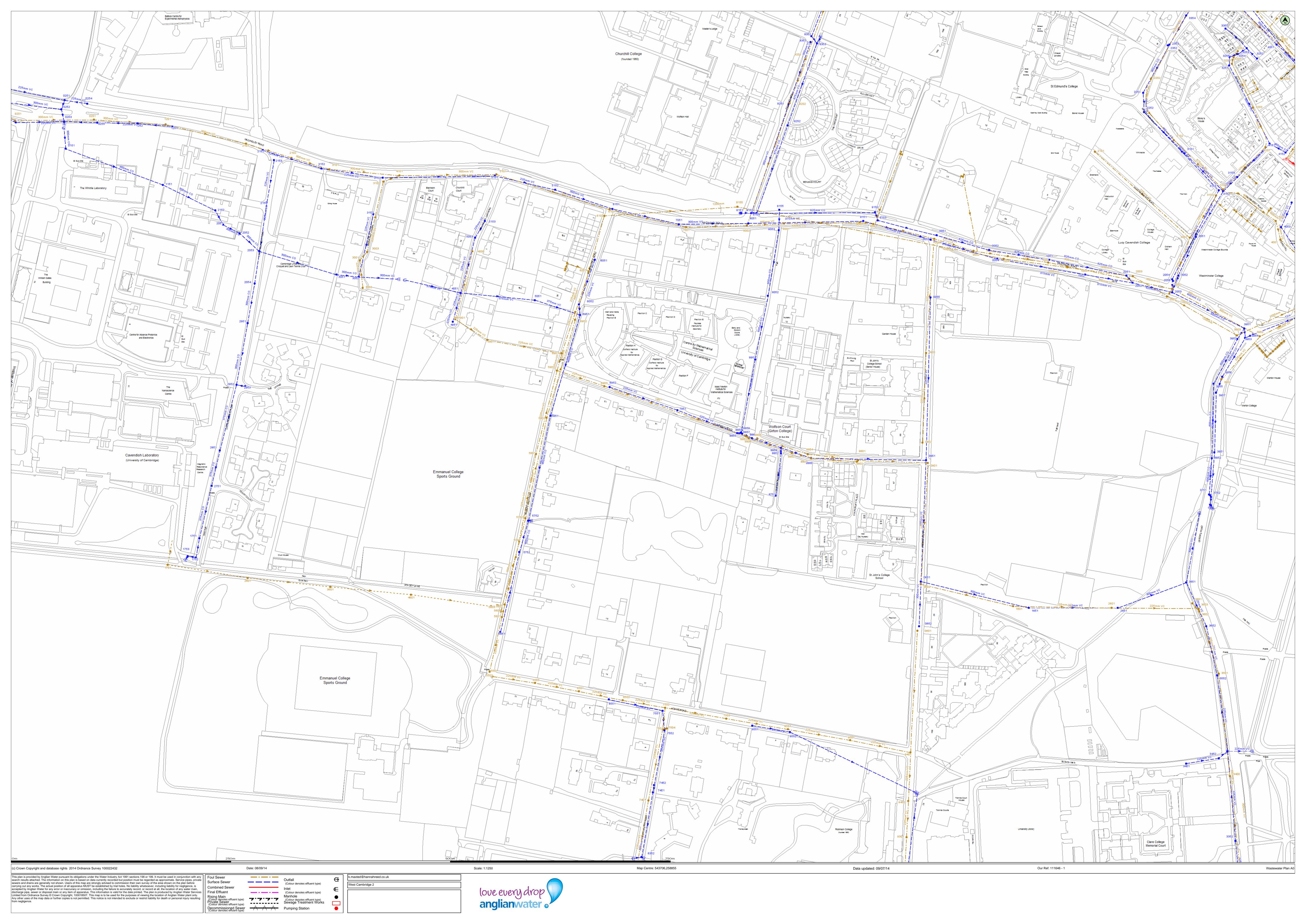


Appendix C Existing Catchment Plan and On Site Drainage Arrangements

Appendix D Anglian Water Sewer Plans



Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Inver
0201	543070	259215	F	18.19	13.08	5.11
1301	542133	259374	F	21.134	16.34	4.794
2301	542297	259330	F	18.562	15.767	2.795
2302	542212	259351	F	19.27	16.099	3.171
3201	542382	259296	F	19.263	15.517	3.746
3301	542312	259312	F	18.402	15.833	2.569
4201	542487	259295	F	19.212	15.237	3.975
5201	542579	259298	F	19.504	14.908	4.596
6201	542674	259288	F	19.575	14.582	4.993
7201	542778	259286	F	19.044	14.28	4.764
7301	542709	259367	F	17.326	14.961	2.365
7401	542751	259442	F	16.58	15.34	1.24
8201	542863	259297	F	17.593	14.902	2.691
8202	542870	259273	F	18.388	13.957	4.431
8401	542858	259438	F	16.95	15.401	1.549
8501	542895	259505	F	17.99	16.24	1.75
8502	542898	259510	F	-	-	-
9201	542980	259215	F	17.8	13.43	4.37
9301	542906	259386	F	17.227	15.036	2.191
9302	542910	259396	F	17.56	15.12	2.44
9401	542938	259429	F	17.78	16.15	1.63
9402	542926	259407	F	17.65	15.63	2.02
0151	543038	259182	S	16.44	14.6	1.84
0251	543037	259238	S	17.82	15.54	2.28
0252	543033	259227	S	18.05	15.44	2.61
0253	543036	259213	S	18	-	-
0254	543063	259234	S	18.26	15.79	2.47
1351	542171	259348	S	20.087	18.434	1.653
1352	542120	259362	S	21.269	19.623	1.646
2351	542208	259338	S	19.422	17.721	1.701
2352	542294	259316	S	18.939	16.629	2.31
3251	542381	259293	S	19.23	17.233	1.997
4251	542489	259293	S	19.172	17.663	1.509
5251	542584	259296	S	19.172	18.123	1.348
6251	542641	259290	S	19.471	-	-
6351	542698	259292	S	17.67	16.406	1.264
7251	542771	259346	S	18.976	17.383	1.593
7451 7451	542771	259282	S	16.83	15.75	1.08
	542770		S			
7452		259470		16.56	15.41	1.15
7453	542763	259459	S	16.7	15.47	1.23
7454	542775	259449	S	16.7	15.625	1.075
7455	542744	259488	S	16.3	15.325	0.975
7456	542747	259468	S	17.35	15.4	1.95
8251	542830	259276	S	18.865	16.907	1.958
8252	542871	259271	S	18.31	16.555	1.755
8253	542871	259279	S	18.766	16.836	1.93
8254	542898	259273	S	17.925	16.197	1.728
8255	542872	259277	S	18.75	16.66	2.09
8256	542872	259283	S	18.25	16.58	1.67
8351	542894	259330	S	17.95	16.65	1.3
9251	542926	259240	S	18.006	16.261	1.745
9252	542981	259212	S	17.81	15.813	1.997
9253	542947	259256	S	17.253	16.143	1.11
9254	542960	259236	S	17.397	15.797	1.6
9351	542925	259396	S	17.98	16.92	1.06
9352	542916	259378	S	18.02	16.84	1.18

Maninus Reference Cassing Northing Legal Type Oover Level Septh to Invent							
	Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert

Manhole Reference	Lasting	Northing	Liquid Type	Cover Level	Depth to Inve

Manhole ReferenceEastingNorthingLiquid TypeCover LevelInvert LevelDepth to Invert4103544427259171C16.3814.122.26	Manhole ReferenceEastingNorthingLiquid TypeCover LevelInvert LevelDepth to Invert2851543213258839S14.212.481.72	Manhole Reference Easting Northing Liquid Type Cover Level Invert Level Depth to Invert	Manhole Reference Easting Northing Liquid Type Cover Level Invert Level Depth to Invert	Manhole Reference Easting Northing Liquid Type Cover Level Invert Level Depth to Invert	Manhole Reference Easting Northing Liquid Type Cover Level Invert Level Depth to Invert
0001 544026 259080 F 11.43 9.32 2.11 0002 544071 259066 F 11.33 9.02 2.31 0201 543070 259215 F 18.19 13.08 5.11	2951 543245 258984 S 14.82 13.13 1.69 2952 543232 258914 S 14.79 12.77 2.02 2953 543242 258912 S 14.62 12.95 1.67				
0601 544007 258634 F 9.3 8.25 1.05 0602 544011 258687 F 9.06 6.57 2.49 0801 544019 258825 F 11.98 6.93 5.05	3051 543346 259039 S 13.99 12.53 1.46 3051 544324 259082 S 11.74 9.39 2.35 3052 543371 259037 S 14.03 12.61 1.42				
0802 544013 258848 F 12.24 10.52 1.72 0901 544017 258950 F 11.84 9.84 2	3052 544304 259038 S 10.43 7.18 3.25 3151 543388 259108 S 15.12				
1001 544110 259060 F 11.28 8.92 2.36 1002 544156 259053 F 11.08 8.81 2.27 1003 544199 259044 F 10.86 8.43 2.43	3152 544355 259134 S 14.01 10.4 3.61 3152 543329 259160 S 17.79 15.45 2.34				
1004 544105 259057 F 10.595 -1.048 11.643 1201 543152 259210 F 18.43 13.01 5.42 1601 544116 258662 F - - -	3153 543399 259149 S 16.46 14.52 1.94 3153 544350 259135 S 13.94 12.05 1.89 3154 544371 259150 S 15.11 11.06 4.05				
1701 543154 258709 F - - - 2001 544297 259023 F 10.12 8.27 1.85 2002 544291 259014 F 9.87 9 0.87	3251 544362 259277 S 20.89 18.44 2.45 3252 544393 259285 S - - - 3253 544382 259297 S - - -				
2003 544252 259037 F 10.595 -1.048 11.643 2101 543243 259188 F 18.38 12.66 5.72 2101 544209 259179 F 14.18 12.31 1.87	3254 544372 259290 S - - - 3255 544362 259287 S - - - 3352 544369 258395 S 8.5 6.32 2.18				
2102 543295 259172 F 18.08 12.48 5.6 2102 544299 259192 F 15.73 13 2.73 2202 544273 259262 F 17.93 13.02 4.91	3354 544313 259334 S 20.91 13.37 7.54 3357 544358 259319 S				
2601 543245 258694 F	3452 544350 258489 S 8.5 6.47 2.03 3453 544360 258497 S 7.9 5.74 2.16 3552 544348 258583 S 7.77 6.37 1.4				
3001 544317 259081 F 11.57 9.36 2.21 3002 543376 259024 F 13.97 12.99 0.98 3003 543381 259065 F 14.34 12.88 1.46	3651 544313 258689 S 7.38 6.31 1.07 3652 544336 258639 S 7.87 6.35 1.52 3751 544339 258789 S 7.25 5.9 1.35				
3101 544355 259136 F 14.15 11.67 2.48 3101 543338 259159 F 17.65 12.35 5.3 3102 543399 259145 F 16.49 12.6 3.89	3752 544341 258786 S 7.18 5.48 1.7 3851 544345 258837 S 7.52 5.69 1.83 3852 544342 258830 S 7.43 6.43 1				
3103 544347 259129 F 13.6 12.72 0.88 3201 544365 259279 F 20.86 18.87 1.99	3951 544379 258978 S 9.24 6.89 2.35 3952 544371 258966 S 9.18 7.06 2.12				
3203 544369 259229 F 19.07 17.59 1.46 3204 544372 259293 F	3953 544380 258967 S 9.17 6.15 3.02 3954 544389 258971 S 9.16 7.37 1.79 3955 544344 258915 S 7.89 6.74 1.15				
3304 544394 259338 F 21.13 16.27 4.86 3400 544363 258469 F 3501 544350 258585 F 7.85 4.86 2.99	3956 544354 258923 S 8.49 6.06 2.43 3957 544347 258905 S 8.21 6.03 2.18 4051 543487 259018 S 13.23 11.78 1.45				
3601 543339 258684 F - - - 3601 544320 258665 F - - - 3602 544328 258656 F 8.23 5.74 2.49	4053 544421 259093 S 12.95 11.6 1.35 4151 544408 259188 S 16.83 12.28 4.55 4152 544426 259178 S 16.55 12.43 4.12				
3603 544327 258659 F - - - 3901 544353 258920 F 9.46 6.6 2.86 3902 544397 258969 F 9.05 6.53 2.52	4154 544433 259121 S 14.37 13.04 1.33 4351 544416 259301 S 20.93 13.45 7.48 4951 543478 258985 S 13.567 12.107 1.46				
3903 544371 258970 F 8.981 -1.28 10.261 4000 543501 259065 F 13.426 11.521 1.905 4001 544420 259079 F 12.42 9.06 3.36	5051 543572 259010 S 12.467 11.124 1.343 5053 543504 259081 S 13.39 12.08 1.31 5151 543526 259152 S 14.61 12.77 1.84				
4101 544415 259100 F 13.17 10.1 3.07 4101 543418 259152 F 16.12 12.1 4.02 4107 544403 259184 F 16.66 14.71 1.95	5152 543595 259136 S 14.01 11.73 2.28 5153 543515 259100 S 13.79 12.37 1.42 5651 543533 258632 S 13.03 11.125 1.905				
4209 544421 259262 F	5751 543554 258724 S 11.3 9.833 1.467 5752 543564 258759 S 10.954 9.214 1.74 5851 543590 258879 S 11.431 9.896 1.535				
4601 543431 258675 F	6051 543640 259056 S 12.427 10.897 1.53 6052 543622 259005 S 12.079 10.735 1.344				
5101 543526 259133 F 14.7 11.79 2.91 5501 543520 258587 F 13.868 10.496 3.372 5502 543524 258582 F 13.908 11.814 2.094	6352 543693 258376 S 9.29 7.05 2.24 6551 543656 258556 S 12.86 11.69 1.17				
5503 543572 258575 F 13.454	6951 543623 258993 S 12.042 10.732 1.31 6952 543657 258911 S 11.351 9.891 1.46 7051 543736 259096 S 13.54 11 2.54				
5603 543522 258662 F - - - 5604 543533 258656 F 10.963 1.663 9.3 5701 543554 258736 F 11.18 9.39 1.79	7451 543706 258450 S - - - 7452 543707 258458 S 10.55 9.45 1.1 7551 543717 258543 S 12.4 11.14 1.26				
5702 543561 258762 F 11.449 1.308 10.141 5801 543573 258835 F 11.23 9.02 2.21 5802 543585 258876 F 12.076 0.915 11.161	7552 543719 258521 S 11.81 10.68 1.13 7851 543734 258885 S 10.921 9.421 1.5 8051 543815 259097 S 12.72 10.53 2.19				
5901 543518 258964 F 12.6 10.708 1.892 5902 543597 258930 F 11.732 8.797 2.935 6001 543633 259042 F 12.323 10.659 1.664	8052 543837 259015 S 11.6 - - 8053 543849 259090 S 12.1 9 3.1 8151 543807 259109 S 12.69 11.32 1.37				
6101 543657 259113 F 13.71 11.2 2.51 6102 543651 259106 F 12.721 -0.243 12.964 6501 543622 258565 F 13.115 10.766 2.349	8153 543818 259109 S - - - 8154 543824 259109 S 12.54 10.37 2.17 8155 543850 259113 S 12.068 9.261 2.807				
6502 543672 258555 F 12.743 10.247 2.496 6901 543602 258950 F 11.884 10.095 1.789 6902 543618 258988 F 13.321 0.585 12.736	8251 543861 259233 S 13.03 11.68 1.35 8252 543859 259209 S 12.88 11.28 1.6 8351 543885 259304 S 14.74 12.5 2.24				
6903 543651 258912 F 11.043 8.251 2.792 7001 543744 259093 F 13.24 10.74 2.5 7401 543701 258441 F 10.26 8.53 1.73	8352 543887 259310 S 14.85 12.41 2.44 8353 543893 259302 S 14.79 12.08 2.71 8551 543819 258526 S 11.33 10.23 1.1				
7501 543717 258522 F 11.762 9.991 1.771 7502 543720 258546 F 12.36 9.821 2.539 7503 543790 258534 F 11.707 9.25 2.457	8552 543862 258519 S 10.78 9.76 1.02 8751 543846 258788 S 11.34 10.72 0.62 8852 543852 258836 S 10.79 8.95 1.84				
7504 543722 258523 F	8853 543806 258859 S 10.64 7.95 2.69 8855 543802 258859 S 10.65 8.88 1.77 8857 543808 258858 S 10.6 9.01 1.59				
8002 543813 259095 F 12.63 10.42 2.21 8100 543802 259116 F 11.169 -0.849 12.018 8201 543880 259284 F 14.12 11.64 2.48	8858 543852 258842 S				
8202 543862 259234 F 13.03 11.1 1.93 8501 543860 258522 F 10.927 8.793 2.134	8861 543819 258853 S 10.6 9.01 1.59 8951 543823 258943 S 11.297 8 3.297 9151 543946 259100 S 11.88 10.08 1.8				
8802 543864 258836 F 10.93 7.641 3.289 8804 543882 258835 F 11.09 7.52 3.57 8805 543825 258853 F 10.69 7.71 2.98	9152 543959 259110 S 11.39 9.32 2.07 9153 543962 259101 S 11.92 8.99 2.93 9252 542981 259212 S 17.81 15.813 1.997				
8806 543815 258853 F 10.59 7.73 2.86 8807 543886 258830 F 11.24 7.5 3.74	3232 342301 233212 0 17.01 13.013 13.013				
9002 543942 259099 F 11.82 9.98 1.84 9003 543957 259097 F 11.7 9.78 1.92 9201 542980 259215 F 17.8 13.43 4.37					
9301 543995 258399 F 9.17 6.63 2.54 9401 543999 258495 F 9.24 7.46 1.78 9402 543997 258440 F 9.07 6.87 2.2 9501 543931 258509 F 9.997 8.221 1.776					
9801 543940 258828 F 12.15 7.28 4.87 9802 543938 258826 F					
0051 544029 259084 S 11.44 8.55 2.89 0052 544089 259067 S 11.29 8.18 3.11 0053 544022 259079 S 11.41 9.75 1.66					
0054 544098 259057 S 11.21 9.21 2 0055 544022 259013 S 11.22 9.7 1.52 0151 543038 259182 S 16.44 14.6 1.84					
0251 543037 259238 S 17.82 15.54 2.28 0252 543033 259227 S 18.05 15.44 2.61 0253 543036 259213 S 18 - -					
0254 543063 259234 S 18.26 15.79 2.47 0255 543074 259212 S 18.28 15.74 2.54 0651 544011 258690 S 9.63 7.42 2.21					
0652 544009 258639 S - - - 0851 544017 258828 S 11.99 7.93 4.06 1051 544157 259056 S 10.97 7.82 3.15					
1052 544198 259039 S 10.81 8.67 2.14 1151 543148 259141 S 15.39 13.97 1.42 1251 543159 259207 S 18.45 16.64 1.81					
1252 543120 259211 S 18.4 16.08 2.32 1651 544134 258660 S - - - 1751 543190 258739 S 13.41 12.08 1.33					
1752 543186 258717 S 13.29 12 1.29 1753 543177 258719 S 13.46 11.79 1.67 2051 543217 259096 S 14.56 13.52 1.04					
2051 544245 259038 S 10.58 7.32 3.26 2052 543236 259086 S 14.76 13.52 1.24 2052 544252 259030 S 10.52 7.26 3.26					
2053 543258 259066 S 14.91 13.32 1.59 2053 544297 259019 S 10.14 6.93 3.21 2054 543253 259029 S 14.62 13.33 1.29					
2054 544297 259034 S 10.26 9 1.26 2056 544298 259032 S 10.15 8.92 1.23 2151 543262 259181 S 18.38 - -					
2151 543262 259181 S 18.38					
2154 543267 259121 S 16.43 14.71 1.72 2251 544264 259246 S 17.42 12.91 4.51 2252 544265 259224 S 16.55 11.93 4.62 2353 544292 259300 S 20.06 14.24 5.82					
2751 543204 258799 S 13.89					Our Ref: 111646 - 1

Appendix E Extracts from CCTV Surface/Foul Water Drainage Investigation

Appendix – Surface water drains with greater than 20% cross-sectional area loss recorded (CCTV survey, 2014)

Surface Water Manhole (MH) No.	Distance between Manholes (m)	Area loss recorded (%)
MH 02 – MH 01	48.00	35% - 70%
MH 02 – MH 03	17.00	25%
MH 06 to MH 05	99.00	30%
MH 07 to MH 06	26.20	25% - 40%
MH 09 to MH 08	60.00	25% - 35%
MH 08 to OUTFALL	24.00	30%
MH 19 to MH 18	46.70	30%
MH 29 to MH 30	105.00	30%
MH 33 to MH 34	89.80	25% – 40%
MH 34 to MH 35	100.00	40%
MH 35 to MH 36	12.00	35%
MH 36 to MH 37	9.60	25%
MH 45 to MH 46	65.10	25%
MH 67A to MH 66A	53.00	50%
MH 74 to MH 75	33.70	40%
Point 'A' to MH 76	12.30	40%
MH 76 to MH 77	50.00	25%
MH 79 to MH 80	5.00	50%
MH 80 to MH 72	38.80	25%
MH 83 to MH 82	10.00	70%
MH 92 to MH 93	33.50	25% - 50%
MH 96 to MH 97	36.10	50%
MH 108 to MH 111	55.40	30%
MH 109 to MH 108	87.00	25%

MH 111 to MH 112	37.20	55%
MH 114 to MH 102	4.10	40%
MH 116 to MH 117	24.00	50%
MH 123 to MH 121	60.00	25%
MH 130 to MH 129	28.00	30%
MH 131 to MH 129	53.00	30%
MH 132 to MH 131	74.50	25%
MH 135 to MH 133	11.00	70%
MH 146 to OUTFALL	25.00	70%
LATT A to MH 90	4.20	40%
HEADER to MH 152	80.00	30%
MH 155 to MH 154	24.20	30%
MH 157 to MH 159	21.70	25% - 50%
MH 159 to MH 160	45.00	30%
MH 163 to MH 165	68.00	70%
D/PIPE to MH 166	27.10	30%

Appendix F Technical Note on Ground Conditions

West Cambridge Masterplan Stage 1b Review

Ground Conditions and Land Quality

On behalf of **University of Cambridge**

Project Ref: 31500 | Stage 1b | October 2014

Document Control Sheet

Project Name: West Cambridge Masterplan Review

Project Ref: 31500

Report Title: Stage 1b Review Ground Conditions and Land Quality

Doc Ref: 31500/GEO/r002

Date: October 2014

	Name	Position	Signature	Date
Prepared by:	Robert Foster	Senior Engineer		
Reviewed by:	Mark Brenton	LLP Director	M Resta	29/10/2014
Approved by	Greg Callaghan	LLP Partner		29/10/2014

For and on behalf of Peter Brett Associates LLP

Revision	Date	Description	Prepared	Reviewed	Approved

Peter Brett Associates LLP disclaims any responsibility to the Client and others in respect of any matters outside the scope of this report. This report has been prepared with reasonable skill, care and diligence within the terms of the Contract with the Client and generally in accordance with the appropriate ACE Agreement and taking account of the manpower, resources, investigations and testing devoted to it by agreement with the Client. This report is confidential to the Client and Peter Brett Associates LLP accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known. Any such party relies upon the report at their own risk.

© Peter Brett Associates LLP 2014

Contents

1	Introdu	uction	1
	1.1	Background	1
	1.2	Legislation and Policy	1
2	Overvi	ew of Existing Information	2
	2.1	Introduction	2
	2.2	Data Sources	2
	2.3	Site History	9
	2.4	Ground and Groundwater Conditions	9
	2.5	Land Quality	10
	2.6	Unexploded Ordnance	10
	2.7	Minerals	10
	2.8	Site Levels, Earthworks and Existing Development	11
3	Geotec	chnical Considerations	12
	3.1	Introduction	12
	3.2	Foundation Conditions	12
	3.3	Shrinkage and Swelling of Clay Soils	13
	3.4	Slope Stability	13
	3.5	Roads	13
	3.6	General Excavations	13
	3.7	Aggressive Ground Conditions	13
	3.8	Infiltration Drainage	14
	3.9	Re-use of Materials	14
	3.10	Existing Buildings and Infrastructure	14
4	Land C	Quality Considerations	15
	4.1	Introduction	15
	4.2	Contamination	15
	4.3	Re-use of Soil	15
5	Potent	ial Development Constraints and Opportunities	16
	5.1	Geotechnical Constraints	16
	5.2	Land Quality Constraints	16
	5.3	Geotechnical Opportunities	16
	5.4	Land Quality Opportunities	17
6	Data G	aps	18
	6.1	Site History	18
	6.2	Ground and Groundwater Conditions	
	6.3	Existing Buildings and Infrastructure	18
	6.4	Land Quality	
	6.5	UXO	

West Cambridge Masterplan Review Stage 1b Ground Conditions and Land Quality

	6.6	Archaeology	.18
	6.7	Existing Processes and Activities	19
7	Recomn	nendations	20
	7.1	Recommended Activities	20

Figures

- 1. Plan of Previous Ground Investigations
- 2. Geotechnical Constraints
- 3. Proposed Exploratory Hole Location Plan

Appendices

Appendix A Scope of Additional Work

1 Introduction

1.1 Background

- 1.1.1 This report presents the findings of the information gathering and data review exercise of ground conditions and land quality for the West Cambridge site.
- 1.1.2 The report provides additional data to and updates the stage 1a review from October 2014 which involved, reviewing and assessing ground and land quality opportunities and constraints, gaps in data, and requirements for further work necessary to support and inform the master planning, EIA and planning application stages.
- 1.1.3 The brief for this element of work included:
 - Collation of available records to provide a summary of ground conditions and land quality aspects.
 - Consider potential for minerals extraction on the site.
 - Provide a gap analysis of ground investigation and land quality data.
 - Provide general strategic level advice relating to substructure, infrastructure and earthworks design.
 - Provide strategic level advice on ground related and land quality constraints and opportunities.
 - Set out requirements for additional data gathering including ground investigations.

1.2 Legislation and Policy

- 1.2.1 The likely ground conditions and environmental setting which might have associated environmental liabilities or which may affect redevelopment are a material consideration in planning applications and the minimum requirements are stipulated by Clauses 120, 121 and 122 and Glossary Page 56 of the National Planning Policy Framework (March 2012), for land potentially affected by contamination.
- 1.2.2 The basic requirements of a Phase 1 study are set out in the Model Procedures for the Management of Contaminated Land (CLR 11), Annex A of BS 5930 and Section 6.2 of BS 10175. Guidance on assessment are also detailed in the Environment Agency's "Guidance on Requirements for Land Contamination Reports" and Cambridge City Council document Contaminated Land in Cambridge Developers Guide April 2009.
- 1.2.3 Potential for minerals sterilisation will be a consideration in planning and checks on Minerals Safeguarding Areas will be required as part of the planning submission process.
- 1.2.4 All the above have been taken into consideration in the data gathering exercise undertaken as part of this Stage 1b study.

2 Overview of Existing Information

2.1 Introduction

- 2.1.1 Data gathering for the site has focused on four principal source areas as these were considered to offer the most comprehensive source of information for the site:
 - Reports, surveys, drawings and studies held by Hannah Reed/PBA based on their historical association with and work on the site since the 1990s.
 - Reports, surveys, drawings and studies from existing developments on the site held by Cambridge City Council.
 - Data obtained from the British Geological Survey and Cambridgeshire County Council on geology and minerals.
 - Ground investigation reports and information from the original planning application and EIA for the site held by the University.
- 2.1.2 The information provided by the various sources is listed below and areas covered by the various reports presented in Figure 1.

2.2 Data Sources

Desk Studies

- 2.2.1 The information provided by the various sources includes desk studies, and similar information, that have been carried out for particular areas of the site as those areas as have been considered for development. The desk studies and other information gathered comprise:
 - Cape Annex Geoenvironmental Desk Study. Prepared by Ramboll for University of Cambridge dated August 2013.
 - Maxwell Centre Geoenvironmental Desk Study. Prepared by Ramboll for University of Cambridge dated March 2013.
 - University of Cambridge Data Centre Geotechnical and Contamination Desk Study.
 Prepared by Ove Arup for Lynxvale Ltd dated 14 June 2012.
 - University of Cambridge, Chemical Engineering and Biotechnology Geoenvironmental Desk Study. Prepared by Ramboll for University of Cambridge Estate Management dated February 2012.
 - Cambridge University Sports Centre Technical Note on Review of ground contamination potential. Prepared by Arup dated 18 July 2011.
 - High Cross, Madingley Road, Cambridge Environmental Study. Prepared by WS Atkins dated December 1996.

Ground Investigations

2.2.2 Records of several ground investigations on the site have also been gathered. Details of these ground investigations are summarised in the following tables. The approximate locations of exploratory holes carried as part of these investigations, or the location of zones of investigation for the smaller sites, are presented in Figure 1 at the rear of this report.

CAPE Annexe, University of Cambridge. Engineers: Ramboll. Contractor: Fugro. Date: November 2013

Scope: Ground investigation for a proposed extension to CAPE building

Exploratory Holes	Depths	Geological Summary	Geotechnical Testing	Geoenvironmental Testing	Monitoring
4 no. TP	0.5-4.0m		<u>Laboratory</u> :	<u>Laboratory</u> :	
5 no. CPT	20m	MG: 0.4-0.5m GC: 19.5+m (via CPT interpretation)	19 no. MC/PI 2 no. PSD 16 no. pH/SO ₄	Soil - 5 no. general contaminant suite and asbestos screen	None

University of Cambridge Data Centre, University of Cambridge. Engineers: Ove Arup. Contractor: BAM Riches. Date: September 2012

Scope: Ground investigation for a proposed new data centre							
Exploratory Holes	Depths	Geological Summary	Geotechnical Testing	Geoenvironmental Testing	Monitoring		
1 no. BH (CP)	30m		<u>In-situ</u> :	Laboratory			
6 no. BH (WS)	3-3.2m		SPTs and U100s in BH	Laboratory: Soil - 10 no. Metals/	Ground gas:		
9 no. TP	2-4.3m	TS/MG: 0.5- 2.7m HD: 0-2.1m GC: 16.6+m	(CP). Laboratory: 12 no. MC/PI 12 no. PSD 6 no. CBR 17 no. Triax 5 no. pH/SO ₄	Inorganics/PAH/ BTEX 5 No. TPH/VOC/SVOC 9 no. asbestos screen 6 no. leachate	Ground gas: CH ₄ 0.3-0.7% CO ₂ 0.0-0.1% O ₂ 20.2-20.7% Flow 0.0I/hr		

University of Cambridge, Chemical Engineering and Biotechnology Building. Engineers: Ramboll. Contractor: Ground Engineering & RSK. Date: January & July 2012

Scope: Ground investigation (separate geoenvironmental and geotechnical phases) for a proposed chemical engineering and biotechnology building

Exploratory Holes	Depths	Geological Summary	Geotechnical Testing	Geoenvironmental Testing	Monitoring
6 no. TP	2.8-4.1m		In-situ: SPTs in BH	Laboratoria	
2 no. BH (CP)	25m & 35m	MG:1.5-3.0m	(CP & WS) <u>Laboratory</u> 21 no. PSD	<u>Laboratory:</u> Soil – 12 no. Metals/ Inorganics/TPH/PAH	Groundwater
4 no. BH (WS)	0.7-5m	HD: 0.0-1.4m GC:32.0+m	20 no. MC/PI 21 no. pH/SO ₄ 18 no. Triax 4 no. Consol	9 no. asbestos screen 6 no. leachate	monitoring on 4 occasions

Cambridge University Sports Centre Phase 1 Western University Campus. Engineers: Arup. Contractor: Ground Engineering. Date October 2011

Scope: Ground investigation for proposed sports centre.

Exploratory		Geological	Geotechnical	Geoenvironmental		
Holes	Depths	Summary	Testing	Testing	Monitoring	
10 no. TP	3-3.6m		In-situ:	<u>In-situ:</u>		
1 no. BH (CP)	30m		SPTs in BH	PID in trial pits		
				<u>Laboratory:</u>		
		MG:0.4-2.0m HD: 0-1.9m GC: 27.5+m	Laboratory	Soil		
			4 no. PSD	8 no. general		
			19 no. MC	contaminant suite 6 no. asbestos	None	
			9 no. Pl			
8 no. CPT	10m	GC. 27.5+III	6 no. pH/SO ₄	screen		
				4 no. Triax	6 no. PCB/volatiles	
			6 no.	6 no. leachability		
			Compaction	5 no. gamma spec radiological analysis		

Report on a Ground Investigation, Infrastructure Phase 3, Charles Babbage Road. Engineers: Hannah Reed. Contractor: Ground Engineering. Date: June 2010

Scope: Ground investigation for proposed car park.

Exploratory Holes	Depths	Geological Summary	Geotechnical Testing	Geoenvironmental Testing	Monitoring
3 no. BH (CP)	10-20m	MG:1.0-1.7m HD:0.7m GC:18.2+m	In-situ: U100s Laboratory: 12 no. MC 3 no. PI 8 no. Consol	None	None

Site Investigation Report at Materials Science and Metallurgy Building, University of Cambridge. Engineers: Ramboll. Contractor: ST Consult. Date: December 2009

Scope: Factual ground investigation report at site of proposed Materials and Metallurgy Building

Exploratory Holes	Depths	Geological Summary	Geotechnical Testing	Geoenvironmental Testing	Monitoring
5 no. BH (WS)	4-9.5m		In-situ: SPTs in BH (WS);	Laboratory	
3 no. BH (CP)	15-30m	MG: 0.8-2.1m HD: 0.5-1.2m	SPTs and U100s in BH (CP). <u>Laboratory</u> :		Ground gas: CH ₄ <0.1%
6 no. TP	2-4m		45 no MCs		CO ₂ 0.0-2.9% O ₂ 16.8-21.2%
		GC: 30+m	42 no Pl 29 no. PSD	5 no. Leachate Groundwater – 6 no.	Flow <1.0l/hr Groundwater:
5 no. CBR -	-		14 no. pH/SO ₄ 4 no. Consol	Metals/Inorganics/PAH/ TPH/Phenols	Dry – 2.4m bgl
			15 no. Triax		

West Cambridge Development – Infrastructure Phase 3, Madingley Road, Cambridge Engineers: Hannah Reed. Contractor: RSA Geotechnics. Date: October 2009

Scope: Factual ground investigation report for proposed infrastructure route

Exploratory Holes	Depths	Geological Summary	Geotechnical Testing	Geoenvironmental Testing	Monitoring
13 no. TP	1.1-1.3m	TS: 0.3m MG: 0-0.5m HD/GC: 0.8+m	Laboratory: 10 no. MC/PI 10 no. PSD 10 no. pH/SO ₄ 10 no. Compaction 10 no. CBR 10 no. MCV 10 no. Triax	None	None

West Cambridge Development. Madingley Road, Cambridge - Ground Investigation Report. Engineers: Richard Jackson Plc. Date: September 2008

Scope: Ground investigation for development parcel

Exploratory Holes	Depths	Geological Summary	Geotechnical Testing	Geoenvironmental Testing	Monitoring
17 no. TP	2.3-3.2m	TS: 0.1-0.4m MG: 0.3-2.3m HD: 0.6-2.6m GC: 2.9+m	Laboratory 9 no. MC/PI 2 no. CBR 2 no. Compaction	Soil - 16 no. General contaminant suite 14 no. Additional lead tests 4 no. VOCs	None

West Cambridge Development, Madingley Road, Cambridge. Engineers: Hannah Reed. Contractor: Geotechnical and Environmental Associates. Date: April 2007

Scope: Ground investigation to determine appropriate method of stabilisation for near surface soils

Exploratory Holes	Depths	Geological Summary	Geotechnical Testing	Geoenvironmental Testing	Monitoring
7 no. TP	1.5-2.8m	MG: 0.5-0.8m HD:0.0-1.7m GC: 1.0+m	Laboratory: 2 no. MC/PI/Compaction/ CBR/PSD 2 no. Lime stabilisation suite using 2% lime	None	None

University of Cambridge, Institute for Manufacturing Building, Charles Babbage Road, Cambridge. Engineers: Ove Arup. Contractor: Ground Engineering. Date 2007

Scope: Ground investigation for proposed building

Exploratory Holes	Depths	Geological Summary	Geotechnical Testing	Geoenvironmental Testing	Monitoring
2 no. BH (CP)	30m	MG: 0.3-2.1m	In-situ: SPTs and U100s in		
6 no. TP	4-4.1m	HD: 0-1.0m	BH (CP). <u>Laboratory</u> :	Unknown – only explor available for re	
9 no. CPT	10.2-13.5m	GC: 29+m	Unknown – only logs reviewed		

West Cambridge Development Site. Engineers: WSP. Contractor: Fugro. Date 1998

Scope: Geotechnical site investigation and contamination survey						
Exploratory Holes	Depths	Geological Summary	Geotechnical Testing	Geoenvironmental Testing	Monitoring	
11 no. BH (CP)	10-20m		In-situ: SPTs and U100s in			
39 no. TP	1.8-3.3m		BH (CP). <u>Laboratory</u> :			
12 no. CPT	10-15m	TS: 0-0.8m MG: 0-1.4m HD: 0-1.9m GC: 17.5+m	44 no. MC 16 no. PI 2 no. PSD 19 no. Triax 6 no. Consol 6 no. CBR 18 no. pH/SO₄	Soil – 36 no. general contaminant suite	None	

High Cross, Madingley Road, Cambridge. Engineers: WS Atkins. Date 1996

Scope: Environmental study to investigate incident of cattle poisoning

Exploratory Holes	Depths	Geological Summary	Geotechnical Testing	Geoenvironmental Testing	Monitoring
Surface or near	Surface or Not	None	State Veterinary Investigation Centre 1995 Soil - 7 no. lead ADAS 1996	None	
	surface	anniicanie	.xe.ie	Soil (compound samples) – 46 no. lead <u>Atkins 1996</u>	None
				Soil – 131 no. lead and other metals	

- 2.2.3 Some desk studies and ground investigation reports make reference to other ground investigations carried out within the site boundary; copies of these investigations have not been retrieved during this stage. These investigations comprise:
 - Ground Investigation for CAPE Building carried out by Geotechnical Engineering in February 2001. The investigation comprised 3 no. boreholes and 6 no. trial pits.
 - Ground Investigation for Physics of Medicine Building carried out by Ground Engineering in April 2006. The investigation comprised 5 no. boreholes and 8 no. trial pits.

Although the reports are currently not held by PBA, the zones of investigation for these sites have been gleaned from other reports and studies. The locations of these zones of ground investigation are shown on Figure 1.

British Geological Survey

- 2.2.4 The British Geological Survey (BGS) on-shore historical borehole record archive has been searched to collect logs of exploratory holes located within or close to the site boundary. The locations of these records are shown on Figure 1. The exploratory hole logs relate to the following developments:
 - Ground investigation for Schlumberger laboratory dated 1991, located in the western area of the site.
 - Ground investigation for University of Cambridge CAD centre dated 1998, located in the western area of the site.
 - Pre-construction ground investigation for Cambridge Western Bypass (now M11 Motorway) dated 1969, located on western edge of site boundary.
 - Madingley Road 33kV Sub-station dated 1989, located on the northern boundary of the site.
 - Unknown investigation for Cambridge City Council dated 1970, located in the north-east corner of the site.

- Ground investigation for Eaton Gate development dated 1995, located just beyond the south-east corner of the site boundary.
- 2.2.5 It should be noted that the positioning of these exploratory holes is based on grid references supplied by BGS for each log, but is not necessarily the actual location of the exploratory hole.

2.3 Site History

- 2.3.1 The overview of the site history has been gleaned from historical Ordnance Survey (OS) maps, and other historical information, presented in desk studies which have been collected as part of this study.
- 2.3.2 The site was largely comprised of agricultural fields during the late 19th and early 20th Centuries. In the early 1940s, the southern and western areas of the site were developed as a wartime industrial facility (the Shorts site). The facility was used to repair bomber aircraft (that had been dismantled at the nearby Bourn airfield) and salvage used parts from redundant bombers. Phase 1 of the Shorts site, comprising hangars, the administration block, canteen and stores were located in the western area of the site and was completed in 1941. Phase 2 of the Shorts site, comprising hangars, offices, a maintenance building and fuel compound were located in the southern area of the site and was completed in 1942.
- 2.3.3 After the war the site was vacated, with site buildings being used by the University, and by the Home Office for storage.
- 2.3.4 By the late 1960s the Phase 1 site in the western area of the site had been demolished and some laboratory buildings were shown in this area. The Phase 2 site buildings in the southern area were still present at this time. The University of Cambridge School of Veterinary Medicine is shown in the central area of the site at this time.
- 2.3.5 By the early 1980s, the M11 Motorway had been constructed on the western boundary of the site. Laboratory buildings, a university Design Centre and a building labelled "British Antarctic Survey" were shown in the western area of the site. The Phase 2 site buildings in the southern area of the site were no longer shown (they were demolished in 1972). This area of the site was taken over by the University Farm and was used for grazing cattle or for grass cutting. Other laboratory buildings were shown in the south-eastern area of the site at this time.
- 2.3.6 The 2002 and 2008 OS maps show further university development in the eastern and western areas of the site.

2.4 Ground and Groundwater Conditions

- 2.4.1 The geological map of the area indicates that the site is completely underlain by Gault Formation (generally referred to as Gault Clay comprising pale to dark grey or blue-grey clay or mudstone). The geological map also indicates that along a very small area of the northern site boundary, the Gault Formation is overlain by Head Deposits (comprising clay, silt, sand and gravel).
- 2.4.2 The Gault Clay was encountered in the all the ground investigations carried out at the site, generally beneath a veneer of topsoil, Made Ground and/or Head Deposits. The Gault Clay was typically described as stiff to very stiff grey/brown becoming grey clay.
- 2.4.3 The Gault Clay is a non-aquifer i.e. a formation generally regarded as containing insignificant quantities of groundwater.
- 2.4.4 Groundwater was generally not encountered during ground investigations at the site, as would be anticipated given the dominant clay geology. Minor seepages were reported in some

exploratory holes, although this was generally from Made Ground and Head Deposits horizons and was not considered to be significant.

2.5 Land Quality

- 2.5.1 In general terms, the ground investigation reports that have been reviewed, that have included geoenvironmental testing, have not identified gross or widespread contamination.
- 2.5.2 An incident of lead poisoning of cattle in the southern area of the site (adjacent to the former Phase 2 Shorts site) in August 1995 was investigated by the Ministry of Agriculture Fisheries and Food (MAFF) State Veterinary Service's Veterinary Investigation Centre in 1995 and subsequently by ADAS and WS Atkins in 1996. It was concluded that the animals had died from the ingestion of a grey material (possibly lead paint) located in the hedge of one of the fields. The grey material was found to contain up to 27% lead.
- 2.5.3 The soils in the area of the former Phase 2 Shorts site in the southern area of the site have been subject to contamination testing, as have soils at sites bordering this area. In general, elevated concentrations of contaminants have not been encountered in this area, or in neighbouring areas.
- 2.5.4 The majority of the site was largely greenfield prior to development during the latter part of the 20th Century. As such, the potential for widespread contamination in the remaining undeveloped areas of the site is considered to be low.

2.6 Unexploded Ordnance

- 2.6.1 No specific study of unexploded ordnance (UXO) has been carried out for the whole site. Cambridge was bombed during the Second World War and the Shorts site could be deemed a potential bomb target.
- 2.6.2 Spent ammunition from aircraft guns may have been deposited in the area west of the road between the Phase 1 and 2 areas of the Shorts site.
- 2.6.3 The desk study undertaken by Arup for the University of Cambridge Data Centre (neighbouring the former War Depot area) included a preliminary UXO risk assessment. This assessment indicates that the nearest record of bombs landing west of Cambridge City Centre are located approximately 2km south-east of the site. Based on the assessment, Arup concluded that their site was unlikely to have been bombed during the Second World War.
- 2.6.4 Other preliminary UXO assessments carried out on different areas within the site boundary report the risk of unexploded ordnance as low/moderate based on high level bomb map information supplied by Zetica.
- 2.6.1 No evidence for UXO or other munitions were encountered during previous investigations or during redevelopment of the site areas to date.

2.7 Minerals

- 2.7.1 The site does not fall within a Minerals Safeguarding Area as set out in the Cambridgeshire and Peterborough Minerals and Waste Development Plan-Core Strategy adopted in July 2011.
- 2.7.2 The nature of the ground conditions is such that the potential for mineral extraction at the site would be extremely limited.

2.8 Site Levels, Earthworks and Existing Development

- 2.8.1 The northern site boundary with Madingley Road falls from approximately 19.50-16.80 m OD west to east and the southern site boundary of the site falls from approximately 17.50m to 12.70m OD west to east.
- 2.8.2 Within the site area there is a west to east running ridge that also falls in elevation eastwards from about 19.70m to 14.70m OD broadly through the middle to upper third of the site. The highest areas seem to be along Charles Babbage Road and the Plaza area which has been built up.
- 2.8.3 The large attenuation pond in the southern area was excavated below existing ground level and spoil from this excavation was stabilised with lime and used to construct the Plaza area such that this is the area of highest elevation at the site
- 2.8.4 The site has been subject to various phases of development such that foundations, slabs, road construction and areas of engineered fill including locally lime stabilised soil will be present in the areas of proposed buildings.

3 Geotechnical Considerations

3.1 Introduction

- 3.1.1 This section is intended to give general geotechnical guidance for masterplanning at the site. A number of geotechnical factors and constraints will need to be considered in the design of foundations, earthworks, and infrastructure for the civil engineering and building work during future development. Large areas of the site are 'green field' and would be unaffected by past industrial development. The following sections outline the geotechnical factors that should be taken into account during master planning.
- **3.1.2** The geology of the site consists of Gault Clay variously covered with Superficial Deposits (mainly Head Deposits). Head Deposits may include deposits of glacially re-worked Gault Clay which may be indistinguishable from weathered Gault Clay.

3.2 Foundation Conditions

Made Ground

- 3.2.1 Made Ground has been identified in some of the ground investigations carried out at the site. The Made Ground encountered has been of variable thickness and composition. Local pockets of Made Ground may be found in others areas of the site even where there is no apparent history of industrial development.
- 3.2.2 Due to the inherent variability in composition, thickness and strength, structures and infrastructure constructed on Made Ground may be at risk from high total and/or differential settlements.
- 3.2.3 The potential presence of buried former foundations, structures or other obstructions should not be overlooked as these may cause differential settlements or prevent penetration of piles.

Head Deposits

- 3.2.4 Based on the information obtained it is likely that the Head Deposits, when present, will not exceed 3m in thickness and consist of firm to stiff sandy gravelly clay. Conventional foundations bearing on to Head Deposits are expected to be suitable for lightly loaded structures, but the depth, thickness and composition of the Head Deposits may be highly variable. Foundations that span different or variable soil types may need to be stepped or lightly reinforced.
- 3.2.5 More heavily loaded foundations may need to be extended down to the underlying more competent and consistent Gault Clay stratum, either by using trench fill foundation or by piling.

Gault Clay

- 3.2.6 Traditional shallow spread or strip foundations are likely to be suitable for some developments on the Gault Clay. However, the Gault Clay is susceptible to weathering and softening which could affect the allowable bearing pressure and, consequently the depth of the weathering and foundation design parameters should be established on a site specific basis. Gault Clay is also susceptible to ground movements, shrinkage and swelling, due to seasonal and long term moisture changes. All clay soils consolidate to a varying degree under applied loading, and the allowable bearing pressure will be determined to ensure total and differential settlements remain within structural tolerances.
- 3.2.7 Heavily loaded foundations for major structures may exceed settlement tolerances and in such cases piled foundations will be required. Consequently large span buildings, high rise

structures or buildings that are very sensitive to settlement may need piled foundations at this site, even if situated on undisturbed natural ground.

3.2.8 Piled foundations will be required where buildings are to be constructed with undercrofts.

3.3 Shrinkage and Swelling of Clay Soils

- 3.3.1 Previous ground investigations at the site have shown that the Gault Clay is of high to very high plasticity and is therefore particularly susceptible to volume change.
- 3.3.2 Seasonal changes in moisture content can affect the near surface soils and foundations in clay soils adopt a minimum depth to avoid such movements. Vegetation such as trees and dense hedgerows can desiccate clay soils to considerable depth and the shrinkage or swelling caused by the planting or removal of trees and hedgerows on clay soils is a common cause of structural damage. New trees planted near foundations cause shrinkage, while the ground below trees and hedgerows that have been removed and built over can take many years to resaturate. In doing so, the ground can swell, causing heave and structural damage.

3.4 Slope Stability

- 3.4.1 In general, the gently sloping topography of the site would not be expected to give rise to significant slope stability issues. However, the presence of Head Deposits at the surface increases the risk of slope instability. Relict slip surfaces roughly parallel to the ground surface and often covering large areas may be present within the Head Deposits themselves, and also in the underlying periglacially weathered clay.
- 3.4.2 Excavations through these relict slip surfaces, e.g. to create level platforms for development, may lead to reactivation and ground instability. Head Deposits may have already been disturbed by earthwork operations in some areas

3.5 Roads

- 3.5.1 Roads constructed in areas where natural soft materials are present at formation level, may require capping layers, or alternatively stabilisation with lime or cement to minimise consumption of granular resources. Roads in areas of Made Ground will require investigation prior to construction to determine the nature and thickness of the fill material and its properties, and mitigating measures designed accordingly.
- 3.5.2 CBR tests carried out for the Phase 3 infrastructure ground investigation recorded CBR values of approximately 6% (unsoaked) for near surface samples collected from the Head Deposits/weathered Gault Clay.

3.6 General Excavations

3.6.1 Excavations in natural ground, such as for services, should not present any problems specific to the site area. Clay soils predominate and consequently groundwater inflows are likely to be slight and easily controlled. Excavations will require side support wherever man entry is required and in soft or loose material side support should also be provided wherever there is a risk of collapse.

3.7 Aggressive Ground Conditions

3.7.1 The Gault Clay is known to contain sulphate minerals which in the presence of groundwater and air can give rise to aggressive conditions for buried concrete. Previous investigations have reported the sulphate conditions to be DS-3, according to BS 8500-1:2005, and concrete

for foundations specified accordingly. A check on conditions should be made prior to construction.

3.8 Infiltration Drainage

3.8.1 The Gault Clay is practicably impermeable so there is no scope for the use of infiltration drainage for the attenuation of runoff from buildings and paved areas. Surface water systems should be designed in accordance with the principles of sustainable urban drainage, SUDS.

3.9 Re-use of Materials

- 3.9.1 From the overview of earthworks testing carried out as part of previous on-site ground investigations, the re-use of site won natural materials for earthworks is likely to be practicable. The Gault Clay and Head Deposit materials are considered to be suitable for most applications although moisture conditioning may be required to achieve optimum conditions for some applications.
- 3.9.2 Successful lime stabilisation tests have been carried out on samples of Gault Clay recovered from the southern area of the site as part of an earlier ground investigation.

3.10 Existing Buildings and Infrastructure

- 3.10.1 There is existing infrastructure and drainage in areas of proposed buildings which will either require diverting or being built over which may necessitate use of piled foundations.
- 3.10.2 Foundations and slabs to existing structures could clash with proposed foundations, there are potential areas of disturbed ground due to previous building work and there may be limits on foundation techniques such as piling due to vibration.
- 3.10.3 Lime stabilised soils will probably require a piled foundation solution to support structures unless this material is excavated and levels reduced.

4 Land Quality Considerations

4.1 Introduction

- 4.1.1 The site was largely used as agricultural fields up until the Second World War when parts of the southern and western areas of the site were developed for an industrial war-time use. Since then, these industrial buildings have been demolished and the site has been developed primarily for university buildings and laboratories.
- 4.1.2 The site is situated in a relatively low sensitivity geoenvironmental setting for the following reasons:
 - The solid geology underlying the site is the low permeability Gault Clay a non-aquifer.
 - There are no significant groundwater abstractions within the site boundary.
 - There are no Source Protection Zones (SPZs) on or overlapping the site.
 - There are no significant European designated environmental receptors on the site such as Ramsar sites or Special Protection Areas (SPAs).
- 4.1.3 The overall potential for land contamination issues on the site is low.

4.2 Contamination

- 4.2.1 The main currently undeveloped areas of the site are largely "greenfield" land and these areas of the site are considered relatively low risk with respect to potential land quality constraints.
- 4.2.2 Potential sources of contamination have been identified from desk studies carried out within the site boundary: area of the Phase 2 Shorts site (aircraft maintenance facility) present in the southern area between 1942 and 1972, areas of Made Ground, areas of the site where construction materials have been deposited or stored, electrical substations and areas of waste storage associated with on-site laboratories.
- 4.2.3 From the findings of ground investigations carried out at the site, the site history and the natural ground conditions, it is considered unlikely that soil contamination will represent a significant risk to future development at the site but may be present locally around point sources or related to specific site activities.
- 4.2.4 There may be locally elevated levels of ground gas and carbon dioxide in particular associated with deeper areas of made ground that may require some form of gas mitigation for buildings.

4.3 Re-use of Soil

4.3.1 The potential for cut and fill and on site reuse of arisings will be limited by site levels, existing development and density of future development .Off-site disposal of soil is therefore possible and soil chemistry and the level of contamination will have an impact on the cost of disposal particularly where Made Ground is excavated.

5 Potential Development Constraints and Opportunities

5.1 Geotechnical Constraints

There are no major geotechnical constraints to site development but PBA's geotechnical appraisal has identified the potential for the following issues, some local and others widespread that will need to be taken into consideration in terms of building form and layout and which will impact on the cost of development.

Areas of potential geotechnical constraints are presented in Figure 2.

- The presence of Made Ground with variable physical properties potentially requiring the deepening of shallow foundations or necessitating piled foundations.
- The potential of reactivating relict slip surfaces during excavation;
- The potential for shrinkage and swelling in the natural strata requiring the deepening of shallow foundations or necessitating piled foundations;
- The possible presence of naturally elevated sulphate in the Gault Clay strata requiring specific buried concrete design;
- The limited potential for infiltration drainage;
- The presence of clay sub-grades which are susceptible to softening and trafficking requiring the importation of capping material or requiring soil stabilisation;
- Existing area of lime stabilised fill buildings piled.
- The locations of existing development foundations to new buildings or necessitates specific foundation types.

5.2 Land Quality Constraints

- 5.2.1 There are no major land quality constraints that will impact on future development, but PBA have identified a number of issues that will need to be taken into consideration.
 - The potential for localised areas of Made Ground that are gassing:
 - The potential for localised hot spots of contamination around point sources that require treatment/removal;
 - The classification of waste materials for off-site disposal;
 - The potential presence of unexploded ordnance (UXO).

5.3 Geotechnical Opportunities

The anticipated ground conditions at the site will offer relatively straightforward conditions for future development because:

Generally the site is level with limited earthworks or site re-profiling required.

- Site soils are generally suitable for shallow foundations for lightly loaded structures.
- Overall the sub-grade conditions at the site are favourable.
- There is potential for re-using site won natural materials in earthworks for future development.

5.4 Land Quality Opportunities

Land quality is not a major issue due to the largely greenfield nature of the site.

- The site will not be classed as "Contaminated Land";
- No site wide remediation will be required;
- There are no major sensitive environmental receptors on or off-site;
- Volumes of materials requiring off-site disposal will be limited.

6 Data Gaps

6.1 Site History

6.1.1 To date, the history of the site has been pieced together from available information presented in desk studies focussed on small areas of the site. A complete overview of the history of the site, including those areas yet to be developed, would be beneficial moving forward to support the future Environment Statement and planning applications.

6.2 Ground and Groundwater Conditions

- 6.2.1 Various ground investigations have been carried out at the site over the last 20 years. However, there are still some areas of the site, particularly in the north-central area and also in the eastern area (east of the School of Veterinary Medicine) which have not been subject to ground investigation.
- 6.2.2 The ground conditions in these areas are unlikely to be significantly different to other investigated areas of the site, although confirmatory investigation would be required for future development in these areas.
- 6.2.3 Where piled foundations may be required deep boreholes will be necessary.

6.3 Existing Buildings and Infrastructure

6.3.1 The nature and extent of existing building foundations and slabs will be required given the proposed density of the development where building foundations and slabs could clash and where there may be restrictions on for example piling due to vibration or impact on adjoining structures.

6.4 Land Quality

- 6.4.1 No site wide investigation or assessment of land quality has been undertaken for the site. Assessment has been on a project by project basis and therefore there are data gaps in information.
- 6.4.2 Previous locations of historical buildings and both historical and current activities that could have given rise to potential contamination such as the aircraft maintenance facility will require targeted investigation.

6.5 UXO

6.5.1 The presence of hangars and aircraft maintenance facility on the site which may have been targeted during WWII will require further study to determine the overall risk rating from UXO. At this stage, there is insufficient information to assess the risks of UXO at the site.

6.6 Archaeology

6.6.1 Although the site has been developed over the last few decades with buildings and infrastructure, the potential for archaeological remains will need to be taken into account in masterplanning.

6.7 Existing Processes and Activities

- 6.7.1 Information on existing processes and activities that take place in each building, particularly in relation to emissions and discharges, storage and waste management, will be required to fully assess potential for contamination and pollution.
- 6.7.2 Existing surface water quality information will similarly be required from attenuation ponds and other existing on-site drainage.

7 Recommendations

7.1 Recommended Activities

- 7.1.1 The further work recommended to ensure a comprehensive understanding of all ground related aspects of the site that will contribute to site master planning and Environmental Statement preparation is detailed in Appendix A and summarised below. Proposed exploratory hole locations are presented in Figure 3.
 - A comprehensive Phase 1 desk study suitable for planning and for EIA for the site to include:
 - An up to date Envirocheck report, including historical OS maps, covering the whole of the site area.
 - ii. Liaison and consultation with Cambridge City Council and University of Cambridge Estates to collect ground condition data they hold for the site.
 - iii. Review of the original EIA and development specific information that was not obtained or was unavailable in time for Stage 1b.
 - iv. A detailed review and summary of exploratory hole logs and geoenvironmental and geotechnical laboratory testing on soil samples retrieved from the site during previous ground investigations.
 - v. A preliminary UXO assessment for the site.
 - vi. Review of existing processes and activities including discharges, emissions, surface water quality, storage and waste disposal.
 - A Phase 2 intrusive investigation to include:
 - i. Investigation in areas where there is currently a gap in data.
 - ii. Investigation targeted at specific areas where either land quality or ground conditions are of potential concern or where detailed design is required for specific land parcels.
 - iii. Classification of soils in terms of waste disposal.

Figures

- 1. Plan of Previous Ground Investigations
- 2. Geotechnical Constraints
- 3. Proposed Exploratory Hole Location Plan

Appendix A

Scope of Additional Work

1. Phase 1 Ground condition Assessment

The objective of the Phase 1 is to identify the likely ground conditions and environmental setting which might have associated environmental liabilities or which may affect development in those areas which are currently undeveloped. A combined ground condition assessment including geotechnical information will also appraise the likely foundation requirements and geological or geotechnical constraints at the site.

A Phase 1 Ground Condition Assessment is the minimum requirement under the National Planning Policy Framework (NPPF) definition of "site investigation information" for sites where development is proposed.

The Phase 1 would comprise a desk study to collect relevant information in the public domain, a detailed review of information collated from previous desk studies and ground investigations, a site walkover and a Tier 1 Preliminary Risk Assessment (qualitative). UK policy and legislation promote the use of a staged risk based approach to the assessment of ground quality/conditions. The underlying principle is the evaluation of *pollutant linkages* in order to assess whether the presence of a source of contamination could potentially lead to harmful consequences.

The basic requirements of a Phase 1 are set out in the Model Procedures for the Management of Contaminated Land (CLR 11), Annex A of BS 5930 and Section 6.2 of BS 10175. The assessment also considers the requirements detailed in the Environment Agency's "Guidance on Requirements for Land Contamination Reports".

Given the former wartime use of parts of the site, it is also recommended that a preliminary unexploded ordnance (UXO) survey is carried out as part of the Phase 1 Ground Condition Assessment to assess the risk of UXO to be present on the site.

2. Phase 2 Ground Condition Assessment

An intrusive ground investigation (Phase 2) will provide information on the ground conditions and geotechnical parameters for the design of the geotechnical aspects of proposed development in those areas currently undeveloped. In addition, information on land contamination is obtained at the same time to verify the findings of the Phase 1 assessment and confirm the assessed contamination risk associated with proposed development.

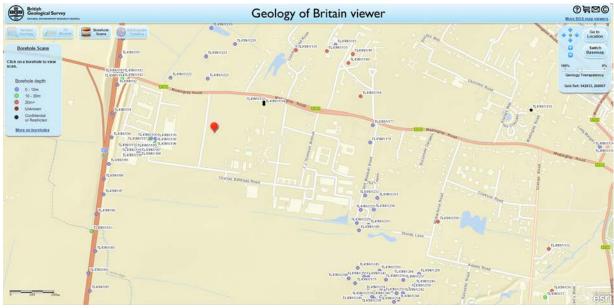
Based on the extent of previous ground investigations at the site, and the known historical uses of the site (particularly the former Shorts site), the proposed scope of intrusive work to fill in the gaps of areas currently un/under investigated at the site could comprise:

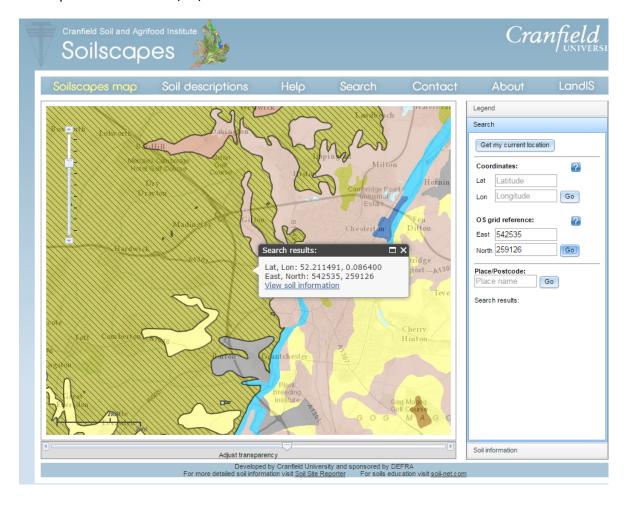
- i) The sinking of seven boreholes to a depth of about 15 m using cable percussion techniques with standard penetration testing and recovery of soil samples.
- ii) The excavation of twenty-six trial pits to examine the near surface ground conditions including the recovery of samples of the soils encountered.
- iii) The construction of groundwater and ground gas monitoring wells in selected boreholes together with the monitoring of groundwater and ground gas levels.
- iv) Geotechnical testing of selected soil samples to determine general geotechnical parameters.

- v) Chemical analysis of soil samples for a range of potential contaminants (the exact testing suite would depend on the outcome of Phase 1).
- vi) Waste acceptance criteria testing

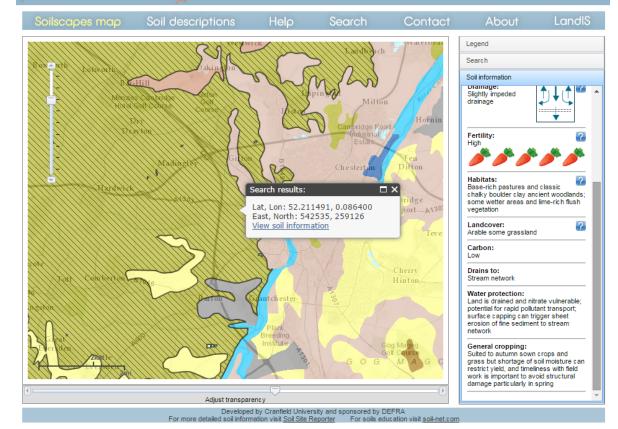
The need for any further work beyond the Phase 1 and 2 assessments, for example detailed plot specific ground investigations to assist in design of building foundations, remediation strategies, verification reports etc., will depend on the findings of the Phase 1 and Phase 2 assessments and it is recommended that the proposals for any further work are addressed on completion of these assessments.

3. ES Chapter


Following completion of the ground condition assessment studies, a chapter on Ground Condtions and Land Contamination which will present an assessment of the likely impact of the proposed development on aspects of the land and water environment will be required for inclusion in the Environmental Statement.


Consultation with the regulators at an early stage is recommended as this promotes stakeholder engagement and assists in the appropriate scoping of works for key milestone deliverables.

Appendix G Extracts from British Geological Survey (BGS) Borehole Logs


BGS maps – Accessed on 29/9/2015



Norwest Holst Soil Engineering Ltd.

Borehole No.

| Contract No. | F9081 | BOREHOLE LOG | Coation. Schlumberger. Cambridge | Client. Burn Happold | L227 | Sheet. | 1 of. 2 | Chainage | Chainage | Crowd Level... 224.27. | m.A.O.D. | Crowd Level... 224.27. | Crowd Level... 224.27. | Crowd Level... 224.27. | m.A.O.D. | Crowd Level... 224.27. |

Method of Boring Cable Percussion Diameter of Borehole 150mm		59	06	Ground	Level 21.27 27/2/91		4.O.D.
Description of Strata	Legend	Depth Below G.L.(m)	O.D. Level (m)	Casing Depth at Sampling	Sampling and Coring	"N"/ R.Q.D.%	Daily Progress
Firm yellowish brown silty CLAY with a little fine rounded gravel.	X 0 X 0 A X	0.30	20.97		8:30-8:48	ritish Geolo	pical Survey
Soft to firm dark grey silty CLAY with a little fine to medium sub-rounded to rounded gravel.	8	1.00	20.27		0.70-0.80		
Firm to stiff light brown mottled grey white sandy CLAY with some fine rounded gravel.	- X	1.60	19.67		1.50-1.95	"8"	Jumi
Soft to firm orange brown very sandy CLAY with much fine to medium rounded and a little coarse sub- angular to sub-rounded gravel.	X - X X				2.50-2.80 (85) 2.80-2.90		
Stiff blue grey fissured silty CLAY. Brash Geological Survey	* X X	ogical Sulvi	,		3.50-3.95 s	"14" rissh Geold	gical Survey
	* * *			K	4.50-4.90 (90) 4.90-5.00		metrenhan
pleat Survey British Geological St	-X X X				6.00-6.45	"18"	علسيلي
	* . *				s		ماسما
British Geological Survey	х х х	logical Survi	Y		7.10-7.20 7.50-7.90 (90) 7.90-8.00	British Geold	gical Sulva
glical Burvey British Geological B	X X X X X X X X X X X X X X X X X X X				# 9.00-9.45 emish Geological Sun J s	"28"	matemplana

Is S.P.T. Undisturbed

Ic C.P.T. X Vane

0 Jar \(\triangle \text{ Water} \)

Type of Sample

British Ge logi

Remarks (Observations of Ground Water etc.) () Uloo Blows Groundwater: Not encountered during drilling.

.

seological Survey British Geological Su

Water levels are subject to seasonal or tidal variations and should not be taken as constant

Norwest Holst Soil Engineering Ltd.

BOREHOLE LOG

Sheet 1 of 2

Location Schlumberger Cambridge Client Buro Happold Method of Boring Cable Percussion Diameter of Borehole 150mm

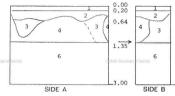
4224 Chainage..... 5908

Ground Level 21.16 m.A.O.D. Date 28/2/91

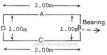
Diameter of Borehole13011811				Date			
Description of Strata	Legend	Depth Below G.L.(m)	O.D. Level (m)	Casing Depth at Sampling	Sampling and Coring	"N"/ R.Q.D.%	Daily Progress
Firm brownish grey silty CLAY with a little fine rounded gravel.	×. *	0.30	20.86		0.00-0.10	British Geol	gical Surve
Firm to stiff grey brown silty slightly sandy CLAY with a little fine to coarse sub-angular to sub- rounded grave!	* * *		19.96 19.76		1.00-1.20 (60) 1.20-1.30 1.40-1.50 1.50-1.95	"2"	1
Soft to firm orange brown very sandy CLAY with much fine to medium subrounded to rounded gravel.		2.10	19.06				-
Firm blue grey mottled light grey sandy CLAY with a little subangular gravel of chalk.	-X -X -X				2.50-2.80 (75) 2.80-2.90		
Stiff blue grey fissured silty CLAY	<u>-X</u>	logical Surv			3.50-3.95	"17" British Geol	gical Survey
-kogical Burney British Geological B	X X X X X X X X X X X X X X X X X X X				4.50-4.90 (80) 4.90-5.00		1
British Geological Survey	*	logical Sulv	y		7.50-7.80 (85) 7.80-7.90		gical Surv
logical Survey British Geological S	* - X-				irmsh Geological Sun S	"26"	
Type of Sample Remarks (Observations of G	round Wa	iter etc.)	() t	J100 B	lows.		

Norwest Holst Soil Engineering Ltd. 4227 590L

Contract No. F9981 TRIAL PIT LOG


Client ... Buro Hapold

Excavation Plant JCB 3CX, Site Master


Dimensions (1 x b x h) 2.00 x 1.00 x 3.00m

Chainage Ground Level ... 21.10 ... m.A.O.D. Date 8/3/91

ELEVATIONS:-

Denth

SAMPLES I No & T

O.DE. A		0.00	OIDE D	Туре	m.
o/ T		0.20	7-1	Dl	0.50
9	5		5/	B1	0.85
British Geological Survey	100		Britis Geological Survey	D2	0.70 Brit
			/	Wl	1.09
		1.33		B2	2.20
6			6	-	
SIDE C		British Geologic	SIDE D		Rittish Genlonical Survey.

No.	Depth m.	STRATA DESCRIPTION	Cv/Cp kN/m ²
1	0.00	Topsoil.	0.46m 13.2
2	0.20 0.64	Soft light brown slightly sandy CLAY with a little fine to coarse angular gravel of flint.	13.5 10.1 14.4
3	0.64 1.35	Soft light grey CLAY with a little, locally same, fine, predominantly medium, rounded gravel of chalk and with some rootlets and rootways.	0.77m 13.5 12.8
4	0.64 1.35	Compact light orangish brown clayey fine to coarse SAND and fine to coarse angular to rounded GRAVEL of flint, and quartzite.	19.5 0.63m
5 Geologica 6	0.20 1.35 Survey 1.35 3.00	Firm orangish brown sandy CLAY, with a little fine to coarse angular to rounded gravel of flint, quartzite and iron deposits. Firm to stiff grey and grey brown mottled CLAY. 1.35-1.70m with a little fine to medium gravel sized rounded gravel of chalk.	9.16 13.5 10.3
		From 1.70mbecoming dark grey, closely fissured CLAY with occasional root systems on fissures.	

NOTES Cv/Cp: Approximate value of undrained shear strength from hand vane/penetrometer

#Groundwater Slight seepage from sandslandsgravel pockets / lenses at 1809mestesisted by Famping: Not required.

Supports/Stability: Spalling from sand and gravel lenses / shoring absent.

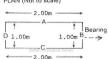
Trial Pit No 6

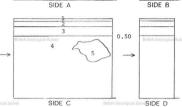
Norwest Holst Soil Engineering Ltd. Contract No. F9081

TRIAL PIT LOG

4227 5908

Location Schlumberger Cambridge Client Buro Hapold


Excavation Plant JCB 3CX Sitemaster Dimensions (1 x b x h) 2.00 x 1.00 x 3.00m Chainage


Date11/3/91.....

ELEVATIONS -

Sheet 1 of 2 PLAN (Not to scale)

No. &	Depth
Type	m.
Bl, Dl	0.50
B2, D2	1.00
D3	1.00* British
В3	1.20
B4, D4	2.00
B5, D5	3.00
Wl	1.20
800	ih Geological Survey

No.	Depth m.	* Sample taken in STRATA DESCRIPTION strata (3a)	Cv/Cp kN/m²
1	0.00-	Topsoil.	1.00m 78 86
2	0.09	MADE GROUND: Red and brown fine to coarse sand with much fine to coarse gravel sized brick fragments, concrete and felt-like geomembrane.	57 96 67 88 71
3	0.28- 0.50	Firm to stiff brown sandy CLAY with some fine to coarse angular gravel of flint, quartzite and iron deposits.	2.50m
logica a	0.50- 0.90	Soft to firm brown slightly sandy CLAY with some fine to coarse angular gravel of first and iron deposits.	98 113 97 93
4	0.50- 3.00	Stiff, grey, occasionally light brown mottled CLAY. 0.50-1.70m with a little fine gravel sized chalk fragments closely fissured. from 1.70m with occasional dark reddish brown root systems along fissures and with occasional up to coarse gravel sized pockets of soft orange brown clay.	3.00m 98 113 108 93

NOTES Cv/Cp Approximate value of undrained shear strength from hand vane/penetrometer Groundwater: Slight seepages from gravel horizons i.e. strata (5) Pumping: Absent

Supports/Stability: Spalling of pit sides from gravel lenses.

45NW 20

Norwest Holst Soil Engineering Ltd.

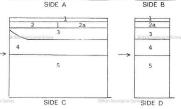
Contract No. F9081 4225 TRIAL PIT LOG Location Schlumberger Cambridge 5908 Buro Hapold Chainage

Excavation Plant JCB 3CX, Sitemaster Dimensions (l x b x h) 2.00 x 1.00 x 3.00m

Ground Level ... 21.08 ... m A O.D. Date 11/3/91

0.34

0.12-


Sheet 1 of 2

PLAN (Not to scale) __ 2.00m_

Bearing D 1.00m

2 00m

SIDE A

No. &	Depth
Туре	m.
Bl,Dl	0.70
B2	1.00
B3,D2	2.00
В4	3.00
Bildis	ih Geological Survey

Cv/Cp

kN/m² 0.70m

strata

72 72 67

88

88 88 93

88

96

98

93

93

Depth No STRATA DESCRIPTION m.

0.00-Topsoil. 0.12 MADE GROUND: Compact reddish brown clayey very sandy fine to 0.12-

coarse gravel of brick fragments, concrete. MADE GROUND: Firm brown clay with a little fine to coarse

(3) 0.34 angular gravel of brick fragments. 0.34-Firm to stiff orangish brown slightly sandy CLAY with a little

(3) 0.70 fine to coarse angular gravel of flint.

0.70-Firm to stiff brownish grey CLAY with a little fine to coarse ish Ged of (4) Su angular gravel of flintural Survey 1.30

0.70-Firm orangish brown slightly sandy to sandy much fine to coarse (6) 1.30 angular to rounded gravel of flint guartzite and chalk.

0.80-Compact orangish brown clayey very sandy fine to coarse angular (7) 1.30 to rounded GRAVEL.

NOTES Cv/Cp Approximate value of undrained shear strength from hand vane/penetrometer Groundwater: Very slight seepage from sand and gravel lenses Pumping: Not required

Supports/Stability: Spalling from sand and gravel lenses.

Site : CADCENTRE, CAMBRIDGE. BOREHOLE LOG KENILWORTH. IGES CV8 1JB. 6769 Client : YORKON LIMITED. BH Tel: 01926 851113 Fax: 01926 851394 Engineer: Sheet 1 of 1 Method Drilling Crew Scale Date Logged By Endrive Hand System. 27/04/98 Danetre Drilling. BW 1:25 Dia (mm) Coord Ground Level Date & Sample Water SPT N M/C Depth Depth Casing Description of Strata Leger Type Level % Depth m. or Cu Turf over TOPSOIL. 0.20 Firm to stiff grey brown silty CLAY with rare fine chalk and flint gravel. 0.50 P 75 0.75 85 0.90 85 P D&P - becoming stiff from 1.0m bgl. 1.50 D&P 125 British Geological Survey 2.00 200 2.00 Very stiff grey mottled brown quickly becoming grey silty CLAY. 2.25 D 2.50 175 -27/04/98 3.00 GROUNDWATER Remarks 1/ Groundwater was not encountered. Struck Cased 20 mins Scaled Remarks

71	+5	NW			4	220	,59	02						188.
eological Surve	19	Talisman S	quare,	Job No.	Site	Geologic	CADCENT	RE, CAMBRIL	DGE.		British	Geolo BOR	EHOLE	LOG
IGES	CV	B 1JB.		6769	Clie	nt :	YORKON	LIMITED.				вн	2	
997	Fax	01926 85 :01926 85	1394		Eng	ineer :						Shee		of 1
Method		Hand Dash		Date	27/0	/ /09		Drilling Cr		Logged	i By 8W	Scal	e 1:	25
Dia (mm)		Hand Syst	em.			und Le	vel	Danetre D	ritting.	-	DW .		111	
11	00				m.			1						
Date & Casing Depth	tish.G	Depth m.	Sample Type	Water Level	SPT N or Cu	M/C %	Depth m.	Gentepical Sc	l mov	Description	n of Strat	a	Rottsh Ge	Legend
								Turf ove	r TOPSO	IL.				
							0.20	Pea Grav	rel (Fre	nch Drair). MADE	GROUND.		
				立			-				9.5			
	0.60		P		110		0.60	Stiff gr	ey brow	n silty (LAY with	occasion	al	·
ological Survey	0.70	0	P D		125 British	eologie	al Survey	fine cha	alk and	flint gra	British	Geological Su	rvey	
_							1.00 -	Venu eti	iff annu	mattlad	brown er	niekly.		× ×
	1.10	0	D&P		150			becoming	grey s	mottled ilty CLAY		JICKLY		×
-			1 1											*
		v-					1	3						
-	1.5	0	P		150			∃ .						
			D					Seological Su					British Ge	× -
		Sological Surv					BINIS	Seological St.						· ×
	2.0	n	P		160		2.00 -	1						×
27/04/98 mological Survey	sh G	eological Surv			British	Geologia	a Survey	Q eological Su			British	Geological Su		o r gical Su
Surgical Survey					British	Gologic	Survey		and the second			Geological Su		
Remarks								Struck	Cased	20 mins	OUNDW/ Sealed		Remarks	
								0.50	cased	ZU mins	baisse	water fro		
Bi	itish G	eological Sure	17				Britis	n Geological St	costy.			Drain.	British Ge	ological Su

129

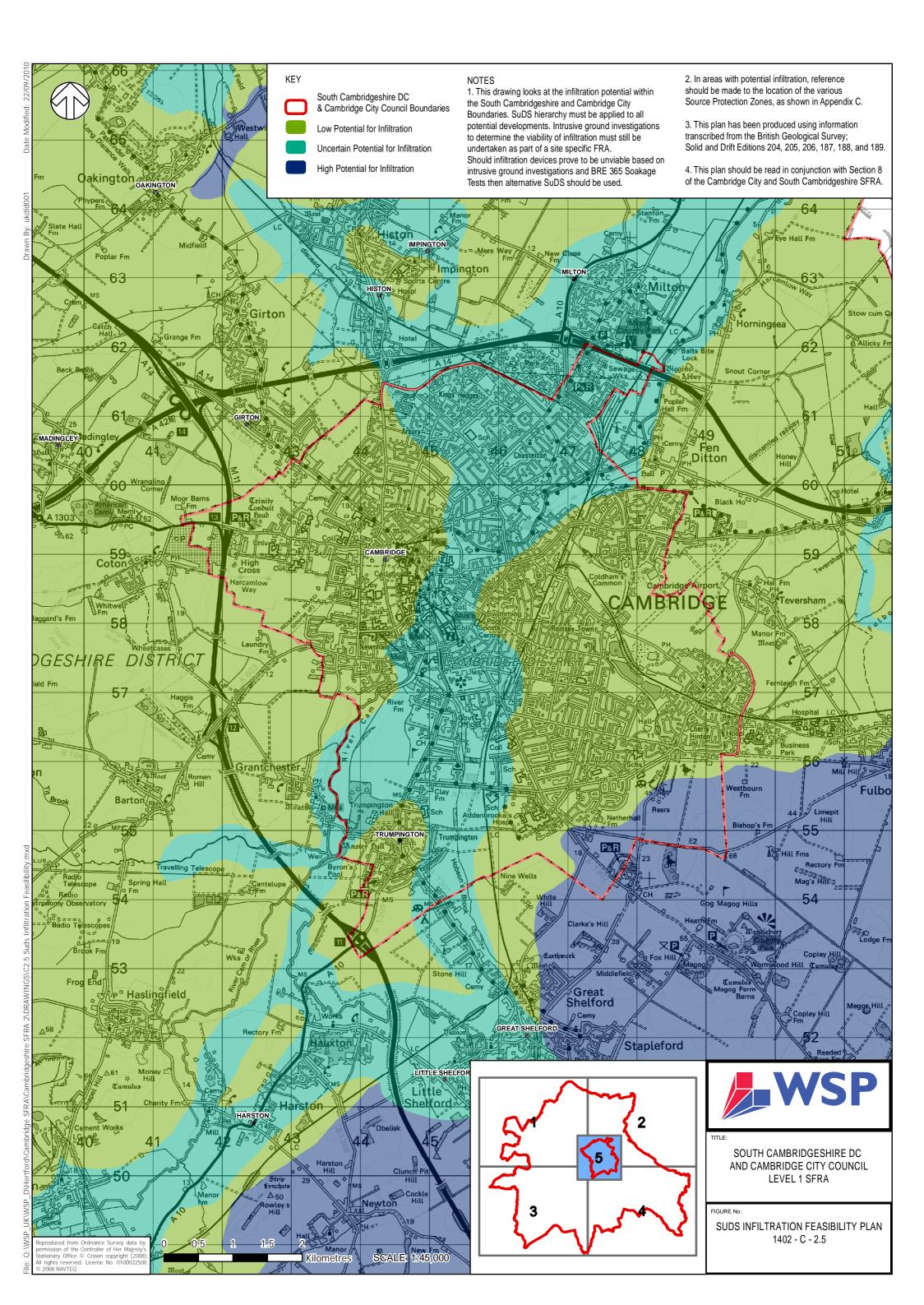
eological Survey	KENILW	ORTH,	quare,	Job No	Billian	Jeologic	CADCEN	TRE, CAMBRI	DGE.		British Geol			LUG
IGES	CV8 1J			676	9 Clie	nt :	YORKON	LIMITED.				BH	3	
	Tel: 01: Fax: 01:	926 85 926 85	1394		Eng	ineer :						Sheet	1 (of 1
Method				Date				Drilling Cr		Logged		Scale		
	rive Han		em.		27/0			Danetre D	rilling.		BW		1::	25
Dia (mm)	00 Co	ord			Gro m.	und Le	vel							
Date & Casing Depth	Dep m.		Sample Type	Water Level	SPT N or Cu	M/C %	Depth m.		D	escription	of Strata	0.	itanla Grou	Legend
								Turf ove	er TOPSOI	L.				
-			Р		75-		0.20	Firm to	stiff gr alk and f s.	ey brown lint gra	silty CLAY vel and occ	with ra	е	
	0.50				13-		0.50 -	Stiff gr occasion	rey mottl nal rootl	ed brown ets in u	silty CLAY oper surfac	with e.		* x
ological Survey	0.70		D P		110	Seologia		3						××
	0.90		P		125 150			- becom	ing dark	grey and	very stiff			<u>*</u>
Ē	1.25		D					1.00m bi	gl.					<u> </u>
Ē	1.50		Р		125			-			2			*
E Bri	1.75 logi	cal Surve	D				Britis	In Beological Su	tvery			Br	tish Ge	* * * * * * * * * * * * * * * * * * *
Ė	2.00		Р		160			-						×
	2.50		D&P		150									× ×
blogical Survey	2.50		, Dub		10000000	3 sologic	Survey				British Geol	ogical Survey		
-27/04/98 -	3.00		P		175		3.00	=						·
Bri	tish Geologi	cal Survey					Britis	th Zeological Su	ivey			Br	tish Ger	ol gical Sui
wegical Survey					British (3eologic	Survey	mmuli			British Geol	ogical Survey		
							- :							
								-			DI INIDIA/A SEC			1
Remarks										-	DUNDWATE	***********		
1/ Ground	water wa	s not	encounte	red.				Struck	Cased	20 mins	Sealed	Re	marks	
Bri	tish Geologi	cal Survey					Britis	h Geological Su	vey			Bi	tish Ge	ological Sur

TL 4	5 NW			4	219	5	702					190
Geological Surve	19 Talisman S KENILWORTH	quare,	Job No	. Site	Geolog	: CADCENT	RE, CAMBRIC	DGE.		British	BOREH	OLE LOG
IGES	CV8 1JB. Tel: 01926 85		676	9 Clie	ent	: YORKON	LIMITED.				вн	4
	Fax: 01926 85	1394	-	Eng	ineer	:	I B 300 - B		Tresse	10	Sheet 1	of 1
Method End	rive Hand Syst	em.	Date	27/0	4/98		Drilling Cr.		Logge	BW BW	Scale	1:25
Dia (mm)	Coord				ound L	evel			************			
Date & Casing	Depth m.	Sample Type	Water	SPT N or Cu	M/C %	Depth m.	1	D	escriptio	n of Strate	1	Legen
Depth :	itish Geological Sub-	17,60		or cu		Botto	Tunf ove	r TOPSOI			Ruit	NYA.
			v			0.50	Turi ove	107301	••			
						0.50	Very sti	iff grey medium f	brown st	ilty CLAY chalk g	with rare ravel.	-
	0.70	Р		200								*
eological Survey				British	deolog	1	1			British	Geological Survey	-:-
						1.00 -						*
-27/04/98	ash Geological Surv					Britis	Geological St	atvery			Brit	ish Gerlogical t
rological Survey				British	Ceolog	Gal Survey				British	Geological Survey	
Br	ish Geological Surv					Britis	Feelogical St	arvey			Brit	ish Geological I
S Mogical Survey				British	Geolog	ical Survey	hrmsondum.			British	Geological Survey	
Remarks					_					ROUNDWA		
1/ Ground	Water was not	encounte	ered.				Struck	Cased	20 mins	Sealed	Ren	narks
Br	itish Geological Surv	ry'				Britis	sh Geological Su	reey			Brit	ish Geological I

191

Method Endr Dia (mm) 10 Date & Casing Depth	CV8 1JB. Tel: 01926 Fax: 01926 Tive Hand Sy Coord Depth m.	851394	Date Water	Eng 27/0	ineer :	YORKON	Drilling Crew	Logged By	Sheet 1 Scale	of 1
Method Endr Dia (mm) 10 Date & Casing Depth	Coord Depth	stem.		27/0 Gro			Drilling Crew	Logged By		of 1
Endr Dia (mm) 10 Date & Casing Depth	Coord Depth	Sample		Gro	4/98		Dinning Crew			
Dia (mm) Date & Casing Depth	Coord Depth	Sample	Motor				Danetre Drilling.	BW		25
Date & Casing Depth	Depth		Mates		und Le	evel				T
			Level	SPT N or Cu	M/C %	Depth m.	De	escription of Strata		Lege
				0, 00			Turf over TOPSOIL			S
E I			8			0.20	Brown silty fine	to coarse sand. M	ADE GROUND.	
F I	0.50	D&P		85		0.40		ey brown silty CLA lint gravel.		-
h (Cological Survey	0.75	Р		100 British 0	eologic	al Survey	Stiff becoming ve quickly becoming rootlets in upper	ery stiff grey mot grey silty CLAY w surface.	tled brown ith rare logical Survey	× ×
	0.90	P D&P		160 185		-				
	1.50	D&P		175		-				× _ ×
E #	1.75 _{ological} Su	reey P		185		Britis	Seological Survey		British G	×
-						2.00 -				-
27/04/98										
h cablogical Survey				British C	Bologic	of Survey		British Ged	logical Survey	
Bri	ish Geological St	irees				Britis	seological Survey		British G	aolagical
h G				British (3 ologic	a Survey -		British Geo	ological Survey	
:										
Remarks					-			GROUNDWATE	R	
	water was no	t encount	ered.				Struck Cased 2	0 mins Scaled	Remarks	

ological Survey IGES	19 Talisman So KENILWORTH, CV8 1JB. Tel: 01926 85	1113	Job No 676	9 Clie	ent	: YORKON	RE, CAMBRIDGE.	British Geold	BOREHOLI BH 6	
Dia (mm)	Fax: 01926 85		Date	27/0	4/98 ound L		Drilling Crew Danetre Drilling.	Sheet 1 Scale	of 1	
Date & Casing Depth		Sample Type	Water Level	SPT N or Cu	M/C %	Depth m.	De	scription of Strata		Lege
-							Turf over TOPSOIL			W
	0.40	D	•			0.20	Soft silty sandy coarse mixed grav	clay with occasions el. MADE GROUND.	al fine to	
ological Survey	0.70 0.80	P P		125 175	Seologid	0.60 al Survey	Stiff becoming ve CLAY with rare ch	ry stiff grey brown alk and flint grave Brilish Geald	n silty el. ogical Survey	
_	0.90 1.00	P D&P		125 150						*
_	1,50	Р		175		-				
Bri	esh Geological Surve	р		175		Britis	Beological Survey		British G	
27/04/98 				British 4	3bologic	2.20		British Geold	ogical Survey	*-
Brit	ah Geological Surve					Britis	Teological Survey		British G	eobgica
ological Survey				British (Geologic	al Survey		British Geold	ogical Survey	
- -	<u> </u>				_		3	GROUNDWATER	,	\perp
Remarks	water was not						Struck Cased 2	0 mins Sealed	Remarks	


Appendix H Illustrative Development Land Use Schedule

	TOTAL GEA [m2]	Non-residential Institutions (D1) GEA					Commercial Research (B1) GEA				T			Population				
		Departmental	Teaching and meeting shared	Cafes and restaurants shared	Nursery	TOTAL D1 [m2]	Work space	Restaurants and Cafes	TOTAL	Assembly and Mu Leisure (D2)	Multi Storey Car Parks	Cycling Facilities	Sui Generis	Students	Uni. Staff	Comm. Staf	TOTAL	Car Parking Requirements
EXISTING (including buildings to be demolished and Roger Needham)	153,869	110,345	0	554	649	111,548	34,286	0	34,286	6,060	0	0	1,975	2,775	1,514	1,006	5,295	1,028
BUILT IN PHASE 1	177,364	77,140	6,200	800	0	84,140	50,670	2,274	52,944	0	31,780	2,850	2,700	1,893	1,069	2,536	5,498	1,589
BUILT IN PHASE 2	177,846	76,625	12,247	4,986	1,000	94,858	47,700	700	48,400	0	30,788	1,710	2,000	2,015	1,084	1,987	5,086	1,143
BUILT IN PHASE 3	99,307	17,480	0	720	0	18,200	53,882	1,297	55,179	4,060	21,868	0	0	583	291	2,695	3,569	849
TOTAL EXISTING + BUILT	608,386	281,590	18,447	7,060	1,649	308,746	186,538	4,271	190,809	10,120	84,436	4,560	6,675	7,266	3,959	8,224	19,448	4,609
TOTAL PHASE 3 = EXISTING + BUILT - DEMOLISHED	559,196	232,400	18,447	7,060	1,649	259,556	186,538	4,271	190,809	10,120	84,436	4,560	6,675	6,175	3,350	8,224	17,748	4,414
CUMMULATIVE PHASE 1 (existing + built - demolished)	301,693	157,945	6,200	1,354	649	166,148	84,956	2,274	87,230	6,060	31,780	2,850	4,675	3,866	2,180	3,542	9,588	2,505
CUMMULATIVE PHASE 2 (existing + built - demolished)	459,889	214,920	18,447	6,340	1,649	241,356	132,656	2,974	135,630	6,060	62,568	4,560	6,675	5,592	3,058	5,529	14,179	3,566
CUMMULATIVE PHASE 3 (existing + built - demolished)	559,196	232,400	18,447	7,060	1,649	259,556	186,538	4,271	190,809	10,120	84,436	4,560	6,675	6,175	3,350	8,224	17,748	4,414

Appendix I Illustrative Development Plot Plan

NOTES ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE. 2. ALL LEVELS ARE IN METRES RELATIVE TO ORDNANCE DATUM NEWLYN UNLESS NOTED OTHERWISE. 3. ALL COORDINATES ARE IN METRES RELATIVE TO ORDNANCE SURVEY NATIONAL GRID. THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS ON SITE BEFORE COMMENCING WORK OR PREPARING SHOP DRAWINGS. 5. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ENGINEERS AND ARCHITECTS DRAWINGS AND SPECIFICATIONS. D02 B10 B01 B07 B02 SHARE SHARE C08 D03 D04 D07c C02 B05a B04 A16 D PRO3 B05b A15 D07b A22 A20 A18 A14 A21 C PRO7 A13 D08 C07a MASTERPLAN, LANDSCAPING & PLOT BOUNDARIES AMENDED 23.06.17 GC ST A26 Date A25 SCALING NOTE: Do not scale from this drawing. If in doubt, ask. UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations. **PRELIMINARY** WEST CAMBRIDGE KEY: APPLICATION SITE BOUNDARY PHASE 1 PUBLIC REALM PHASE 1 PHASE 2 ■ PUBLIC REALM PHASE 2 WEST CAMBRIDGE_DRAFT PLOT PLAN INCLUDING PUBLIC REALM ILLUSTRATIVE DEVELOPMENT PLOT PLAN PHASE 3 ■ PUBLIC REALM PHASE 3 with Development Schedule Version 9 Scale 1:2000@A1 NO WORKS PUBLIC REALM NO WORKS **UNIVERSITY OF** WOODLAND AECOM, March 2017 CAMBRIDGE 02.05.2017 GC Offices throughout the UK and Europe proved ST ecked ST NTS www.peterbrett.com © Peter Brett Associates LLP P1 CAMBRIDGE Tel: 01223 882 000 31500/2001/201

Appendix J Extracts from the South Cambridgeshire District Council's Strategic Flood Risk Assessment (SFRA) and Anglian Water Flood History & Cambridgeshire County Council Flood Report

